

ALUMTEK CORPORATION

TECHNICAL CATALOG

OF

BUS BAR CONDUCTORS

Ref. Code: TD-RD-03-022-01

History:											
No.	Date	Prepared by	Approved by	Description	Edition	Pages					
1	16.09.2015 Javadi		Akbarshahi	First Issue	01	6					

Aluminum Bus Conductor

Today, aluminum is one of the most widely specified conductive materials used in the manufacture and construction of electrical power distribution components and equipment. Typical applications presently using aluminum conductors include bus duct, bus bar, panel boards, switchgear, isolated phase bus and a host of other similarly purposed products installed virtually everywhere–from electric utility switchyards to substations construction all over the world.

The most commonly used alloys are 6063, 6061, and 6101. Where high strength and lower conductivity is called for, alloy 6061 bus is used. Where high conductivity is required, with a minimum sacrifice in mechanical properties, alloy 6101 is used. Alumtek aluminum bus conductors are manufactured to meet appropriate ASTM specifications. These include ASTM B-317 Aluminum Alloy Extruded Bar, Rod, Pipe and Structural Shapes for Electrical Purposes for Alloy 6101. The tempering process is an application that hardens or strengthens the metal by applying heat and/or cooling the metal. The most common tempers are T6, T61, and T63. T6 is solution heat treated, and artifi cally aged to maximum mechanical property levels. T61 is an overaged temper with higher conductivity, but lower mechanical properties than T6. T63 is an "in-between" temper with higher conductivity than T6, but less than T61. The most common alloy and temper combinations are 6063-T6, 6061-T6, 6101-T61, and 6101-T63.

When Selecting a Bus Conductor A variety of factors must be considered in bus design. In all applications, considerations include d-c or a-c current, ampacity required, frequency, operating voltage, allowable voltage drop, maximum possible short circuit currents, available space, and the taps and connections required. Bus conductor ampacities are usually based on a continuous operating temperature of 40°C above an ambient temperature of 40°C. The ampacity could be calculated for other condition as per customer request.

Bus Conductor is sold in various lengths ranging from 3 m to 12 m.

Contact Alumtek Sales department for more information.

Mechanical and Electrical Properties of Aluminum Bus Conductors, 6101-T6 Aluminium Alloy

Size	Outside Dia.	Wall Thickness	Area	Weight	Tensile Strength		D.C. Resistance	Current Rating at	Short Circuit	Deflection ¹	Moment of	Section Modulu
					Min. Ultimate	Min. Yield	at 20°C	50 Hz^3	Current ²	Deneetion	Interia	S
	mm	mm	mm	Kg/m	kN	kN	Ω/km	Amper	KA	cm	cm ⁴	cm ³
40*5	40	5	550	1.48	110	93	0.0570	937	44	31.5	9	4
50*5	50	5	707	1.91	141	120	0.0443	1115	56	19.2	18	7
50*6	50	6	829	2.24	166	141	0.0377	1208	66	20.0	21	8
50*8	50	8	1056	2.85	211	179	0.0296	1363	84	21.5	25	10
63*6	63	6	1074	2.90	215	183	0.0291	1451	85	12.0	45	14
65*5	65	5	942	2.54	188	160	0.0332	1369	75	10.9	44	13
80*6	80	6	1395	3.77	279	237	0.0224	1756	111	7.1	98	24
80*10	80	10	2199	5.94	440	374	0.0142	2204	175	7.9	140	34
100*6	100	6	1772	4.78	354	301	0.0176	2100	141	4.4	200	39
100*8	100	8	2312	6.24	462	393	0.0135	2399	184	4.6	251	49
115*6	115	6	2055	5.55	411	349	0.0152	2352	163	3.3	312	53
120*6	120	6	2149	5.80	430	365	0.0145	2434	171	3.0	357	58
120*8	120	8	2815	7.60	563	479	0.0111	2786	223	3.1	452	74
150*6	150	6	2714	7.33	543	461	0.0115	2921	215	1.9	718	94
160*6	160	6	2903	7.84	581	493	0.0107	3081	230	1.7	878	108
200*6	200	6	3657	9.87	731	622	0.0085	3706	290	1.0	1754	172

¹ These are maximum deflection values in cm for a simple beam with uniformly distributed load and span length 10 m. Defl ection d1 for any other span L1 may be obtained from the relation: d1=d (L1/L)⁴

² These are maximum short circuit current for 80 °C ambient temperature and 120 ° C temperature rise in 1 second.

³ current ratings are based on 40°C rise over 40°C ambient in still but unconfi ned air, normally oxidized surface (e=0.35).

Bus Packaging System

Alumtek Production Facilities

Extrusion Presses

Aging Furnances

6